68 research outputs found

    A semi-induced subgraph characterization of upper domination perfect graphs

    Get PDF
    Let β(G) and Γ(G) be the independence number and the upper domination number of a graph G, respectively. A graph G is called Γ-perfect if β(H) = Γ(H), for every induced subgraph H of G. The class of Γ-perfect graphs generalizes such well-known classes of graphs as strongly perfect graphs, absorbantly perfect graphs, and circular arc graphs. In this article, we present a characterization of Γ-perfect graphs in terms of forbidden semi-induced subgraphs. Key roles in the characterization are played by the odd prism and the even Möbius ladder, where the prism and the Möbius ladder are well-known 3-regular graphs [2]. Using the semi-induced subgraph characterization, we obtain a characterization of K 1.3-free Γ-perfect graphs in terms of forbidden induced subgraphs. © 1999 John Wiley & Sons, Inc

    The Ratio of the Irredundance Number and the Domination Number for Block-Cactus Graphs

    Get PDF
    Let γ(G) and ir(G) denote the domination number and the irredundance number of a graph G, respectively. Allan and Laskar [Proc. 9th Southeast Conf. on Combin., Graph Theory & Comp. (1978) 43-56] and Bollobás and Cockayne [J. Graph Theory (1979) 241-249] proved independently that γ(G) < 2ir(G) for any graph G. For a tree T, Damaschke [Discrete Math. (1991) 101-104] obtained the sharper estimation 2γ(T) < 3ir(T). Extending Damaschke's result, Volkmann [Discrete Math. (1998) 221-228] proved that 2γ(G) ≤ 3ir(G) for any block graph G and for any graph G with cyclomatic number μ(G) ≤ 2. Volkmann also conjectured that 5γ(G) < 8ir(G) for any cactus graph. In this article we show that if G is a block-cactus graph having π(G) induced cycles of length 2 (mod 4), then γ(G)(5π(G) + 4) ≤ ir(G)(8π(G) + 6). This result implies the inequality 5γ(G) ≤ 8ir(G) for a block-cactus graph G, thus proving the above conjecture. © 1998 John Wiley & Sons, Inc

    The domination parameters of cubic graphs

    Get PDF
    Let ir(G), γ(G), i(G), β0(G), Γ(G) and IR(G) be the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number of a graph G, respectively. In this paper we show that for any nonnegative integers k 1, k 2, k 3, k 4, k 5 there exists a cubic graph G satisfying the following conditions: γ(G) - ir(G) ≤ k 1, i(G) - γ(G) ≤ k 2, β0(G) - i(G) > k 3, Γ(G) - β0(G) - k 4, and IR(G) - Γ(G) - k 5. This result settles a problem posed in [9]. © Springer-Verlag 2005

    The k-tuple domination number revisited

    Get PDF
    The following fundamental result for the domination number γ (G) of a graph G was proved by Alon and Spencer, Arnautov, Lovász and Payan: γ (G) ≤ frac(ln (δ + 1) + 1, δ + 1) n, where n is the order and δ is the minimum degree of vertices of G. A similar upper bound for the double domination number was found by Harant and Henning [J. Harant, M.A. Henning, On double domination in graphs, Discuss. Math. Graph Theory 25 (2005) 29-34], and for the triple domination number by Rautenbach and Volkmann [D. Rautenbach, L. Volkmann, New bounds on the k-domination number and the k-tuple domination number, Appl. Math. Lett. 20 (2007) 98-102], who also posed the interesting conjecture on the k-tuple domination number: for any graph G with δ ≥ k - 1, γ× k (G) ≤ frac(ln (δ - k + 2) + ln (over(d, ̂)k - 1 + over(d, ̂)k - 2) + 1, δ - k + 2) n, where over(d, ̂)m = ∑i = 1n ((di; m)) / n is the m-degree of G. This conjecture, if true, would generalize all the mentioned upper bounds and improve an upper bound proved in [A. Gagarin, V. Zverovich, A generalised upper bound for the k-tuple domination number, Discrete Math. (2007), in press (doi:10.1016/j.disc.2007.07.033)]. In this paper, we prove the Rautenbach-Volkmann conjecture. © 2007 Elsevier Ltd. All rights reserved

    On general frameworks and threshold functions for multiple domination

    Get PDF
    © 2015 Elsevier B.V. All rights reserved. We consider two general frameworks for multiple domination, which are called (r,s)-domination and parametric domination. They generalise and unify {k}-domination, k-domination, total k-domination and k-tuple domination. In this paper, known upper bounds for the classical domination are generalised for the (r,s)-domination and parametric domination numbers. These generalisations are based on the probabilistic method and they imply new upper bounds for the {k}-domination and total k-domination numbers. Also, we study threshold functions, which impose additional restrictions on the minimum vertex degree, and present new upper bounds for the aforementioned numbers. Those bounds extend similar known results for k-tuple domination and total k-domination

    The binding number of a random graph

    Get PDF

    Upper domination and upper irredundance perfect graphs

    Get PDF
    Let β(G), Γ(G) and IR(G) be the independence number, the upper domination number and the upper irredundance number, respectively. A graph G is called Γ-perfect if β(H) = Γ(H), for every induced subgraph H of G. A graph G is called IR-perfect if Γ(H) = IR(H), for every induced subgraph H of G. In this paper, we present a characterization of Γ-perfect graphs in terms of a family of forbidden induced subgraphs, and show that the class of Γ-perfect graphs is a subclass of IR-perfect graphs and that the class of absorbantly perfect graphs is a subclass of Γ-perfect graphs. These results imply a number of known theorems on Γ-perfect graphs and IR-perfect graphs. Moreover, we prove a sufficient condition for a graph to be Γ-perfect and IR-perfect which improves a known analogous result. © 1998 Elsevier Science B.V. All rights reserved
    • …
    corecore